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ABSTRACT

The motivations for holding this workshop came from the recently discovered associations between
proximity graphs and Pathfinder networks. The elegant theoretical domain and the breadth of applica-
tions make this a very rich area indeed. The workshop was attended by several of the leading researchers
in proximity graphs, and was organized so that there would be adequate opportunity for discussion of
common interests. The presentations were organized into four sections: theoretical foundations, algo-
rithms and computational aspects, applications, and graphics and unsolved problems. There were also
demonstrations of three systems based on proximity graphs: information retrieval using Pathfinder net-
works, a robotic vision database system organized as a monotonic search network, and a UNIX help sys-
iem on a Hypertext Browser organized as 2 Pathfinder network. A tocl to display and manipulate large
graphs was also demonstrated. The workshop brought together some mainstream graph theorists and the
researchers who had been working on proximity graphs as a special case of graph theory, and the inter-
change was profitable for all.
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PREFACE

The motivations for holding this workshop came from my recent discovery of the
research on proximity graphs, by means of my own studies in the development of
Pathfinder networks. The fascinating theoretical associations which have come from
the work on proximity graphs, and the breadth of applications of them, make this a
very rich area indeed. The connections with computational geometry and complexity
theory, the modeling of aspects of vision and perception, and of human associative
memory, all contribute to the promise of the perspective afforded by proximity graphs.
In my early work (as evidenced by the transparencies herein), I had named these
graphs empty-neighborhood graphs, with the intent of generalizing the concept beyond
the well-known cases which had been studied, before realizing that others had called
them proximity graphs. But the name itself is of relatively little importance; the
domain is the thing, and it is a veritable banquet of interesting problems and applica-
tions.

The workshop was designed to be as informal as possible, and the intention was
to have the contributors present their most recent work; thus no formal papers were
expected, and the proceedings consist of abstracts and transparencies. Unfortunately,
the editor has moved in the intervening time, and this has caused the delay in the final
organization and distribution of these proceedings; I offer my apologies to all.

I would like to express my grateful appreciation to those who helped make this
workshop possible: those who came from many places and presented their work, and
participated in the many discussions; to Kamal Abdali of NSF, and Marc Lipman of
ONR, who encouraged the workshop with their moral support, and who also aided in
obtaining financial support; to Marc Lipman for attending and moderating the panel
discussion; to the graduate students at NMSU, who helped in many ways in preparing
for the workshop, in giving demonstrations and in acting as hosts for the visitors; to
my research colleagues at NMSU--particularly Ken Paap, Roger Schvaneveldt, Jim
McDonaid, Art Knoebel, and Keith Phillips--with whom many profitable discussions
were held; to the Department of Computer Science and the College of Arts and Sci-
ences at NMSU, for their support and encouragement; and to Frank Harary, whose
insights in both graph theory and workshops helped in numerous ways.

Don Dearholt
Mississippi State University
May 22, 1991
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ABSTRACT

Introduction to Pathfinder Networks (PFNETs) and
Relationships Between Them and Proximity Graphs

Donald W. Dearholt
Department of Computer Science

Mississippi State University
MS 39762

A graph model for human semantic memory (namcd "Pathfinder”) has proven to be a rich source
of associations with both graph thcory and computationaf gcometry, including proximity graphs. New
theorems and heuristics have been devised based upon the properties of Pathfinder networks, and a new
class of proximity graphs has been defined. Relationships with previously studicd proximity graphs have
also been established. Applications resulting from the rescarch in Pathfinder networks include online
help systems, a hypertext browser, and a vision database intended for robotics applications. These
applications feature the organization of information according to the principles of organization of
Pathfinder networks. As such, these applications support various levels of abstraction and clustering,
and principled associations between clusters. The advaniages of using Pathfinder-based networks in the
human-computer interface or a specialized database include (1) the provision for a good "cognitive
match” with users, (2) higher levels of abstraction and clustering arc supported, (3) the organization is
typically nonhierarchical, allowing multiple paths of access to needed information, and (4) the most
salient relationships (often the most frequently used paths) are represented explicitly as edges in the net-
work.




OUTLINE

I. MOTIVATION, PERSPECTIVE, AND OBJECTIVES

II. PATHFINDER NETWORKS
A. DEFINITIONS AND PROPERTIES

B. APPLICATIONS

1. EMPTY-NEIGHBORHOOD (PROXIMITY) GRAPHS
A. DEFINITIONS AND PROPERTIES

B. APPLICATIONS




PHILOSOPHICAL STANCE: BETTER MODELING OF HUMAN
INTELLIGENCE WILL LEAD TO BETTER Al

THE NETWORKS WE ARE STUDYING:

DESCRIBE, SUMMARIZE, AND DISPLAY DATA

SUGGEST A PSYCHOLOGICAL MODEL ABOUT
MENTAL REPRESENTATIONS

PROVIDE A PARADIGM FOR:
KNOWLEDGE REPRESENTATION
MODELS OF CLASSIFICATION
ORGANIZATION OF DATABASE SYSTEMS
SPREADING ACTIVATION (SEARCH)

i
1
i
i
]
|
i
|
I
1 COMPLEMENT MDS AND CLUSTER ANALYSIS
|
|
|
i
i
|
i
|
|




THE BIGGEST CHALLENGE

FOR AI AND COGNITIVE MODELING:

TO DESIGN A SYSTEM WHICH DOES MANY THINGS WELL,
ALTHOUGH EACH ALGORITHM MIGHT NOT BE OPTIMAL
ASSOCIATIONAL ORGANIZATION
CLUSTERING
SEVERAL LEVELS OF ABSTRACTION
CLASSIFICATION
SEARCH

DESCRIPTION OF DECISIONS

|

|




RESEARCH OBJECTIVES

I. THEORETICAL
DEVELOP AND TEST METRICS

RELATIONSHIPS:
GRAPH THEORY
PATH ALGEBRAS
PROXIMITY GRAPHS (RNG, GG, DTG)

LEVELS OF ABSTRACTION
II. EMPIRICAL

SEMANTIC MEMORY

CLASSIFICATION MODELS

PROPOSITIONAL ANALYSIS

KNOWLEDGE EXTRACTION FROM EXPERTS
III. APPLICATION DOMAINS

ORGANIZATION OF CONCEPTS
INTERFACES--INFORMATION RETRIEVAL, HELP SYSTEMS
DATABASE ORGANIZATION

PERCEPTION--OUTLINES OF OBJECTS




WHY USE GRAPHS?

ALTERNATIVES:
MULTIDIMENSICNAL SCALING
CLUSTERING

CORRELATICN MATRIX

GRAI;HS HAVE BEEN USED FOR:
KNOWLEDGE REPRESENTATION
CONCEPT LEARNING
MODELS OF SEMANTIC MEMORY
ORGANIZATION OF A DATABASE SYSTEM
ASSOCIATIVE SEARCH
CLASSIFICATION

DESCRIPTION AND DECISIONS

|
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WHAT IS SIMILARITY?

I. SUBJECTI E

IS LIKE
{ IS SIMILAR TO
., RESEMBLES B
;IS A KIND OF
( PARALLELS
PURPOSE: CONFERS PROPERTICS OF B UPCN A
ONLY ESTIMATES ARE AVAILABLE
CAN BE ASYMMETRIC

RESULT OF DIFFERENT ASSOCIATIONS/FEATURES
II. OBJECTIVE

L1 OR L2 NORM (DISTANCE)

SET INTERSECTION
SET UNION

(CO-OCCURRENCE);




EXAMPLES OF ASYMMETRIC SIMILARITY

NORTH KOREA IS LIKE CHINA

THE PORTRAIT RESEMBLES YOU
TRUE LOVE IS AS DEEP AS THE OCEAN
LIFE IS LIKE A PLAY

A PLAY IS LIKE LIFE




THE METRIC AXIOMS

GIVEN ENTITIES A, B, AND C:

1. THE DISTANCE BETWEEN AN ENTITY AND ITSELF IS ZERO
oS

2. THE DISTANCE FROM A TO B IS THE SAME AS
THE DISTANCE FROM B TO A

(AL__(B)

3. THE DISTANCE FROM A TO C IS LESS THAN OR EQUAL
TO THE DISTANCE FROM A TO B AND THEN TO C

(B)




DEFINITION

A PATHFINDER NETWORK (PFNET) IS A GRAPH BASED ON
PAIRWISE ESTIMATES OR MEASURES OF DISTANCES
BETWEEN ENTITIES.

EACH ENTITY CORRESPONDS TO A NODE.
EACH PAIR OF NODES IN A PFNET IS CONNECTED DIRECTLY

BY AN EDGE WHOSE WEIGHT IS THE DISTANCE BETWEEN
THE TWO ENTITIES,

UNLESS THERE IS A SHORTER ALTERNATIVE PATH.

10




EXAMPLE OF A LABELED PIFNET

1

SPARROW

SEC, MCSTB

PRI, MCSTA

SEC, MCSTB

— — —‘S— . —— —
SEC, MCSTA

11

PRI, MCSTA




TOUCHSCREEN DISPLAY FOR EMPIRICAL DATA

HOW SIMILAR IS A TO B?

o —

OK

DISTANCE + SIMILARITY = K

12
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THE PARAMETERS OF A PFNET

R-METRIC:

EBE%SFOR FINDING THE LENGTH OF A PATH WITH K

K
Ley= | E w, "
I=1
R PATH LENGTH DATA SCALE
1 SUM OF WEIGHTS RATIO
2 EUCLIDEAN RATIO
oo MAXIMUM WEIGHT RATIO, ORDINAL

13




THE PARAMETERS OF A PFNET

Q-PARAMETER:

"DIMENSION" OF GENERALIZED TRIANGLE INEQUALITIES SATISFIED

14




THE TRIANGLE INEQUALITY

é D

E<B +C _
A<E+D<B+C+D

THE GENERALIZED TRIANGLE INEQUALITY

A <[BR+CR4+DR]VR

PURPOSE: TO PRESERVE MINIMAL-DISTANCE PATHS

15




DIRECTED PFNET FOR NINE COUNTRIES

14

POLAND

ﬂ
r;:}///ﬁg
ENGLAND
A
1 1

E
28

R-METRIC IS INFINITY

G-PARAMETER IS EIGHT

16

CZECHOSLOVAKIA

19

20




THEORETICAL RESULTS

FOR A GIVEN DISTANCE MATRIX,

PFNET(R 0 ):
IS UNIQUE,
PRESERVES GEODETIC DISTANCES,
LINKS NEAREST NEIGHBORS, AND

CONTAINS THE SAME INFORMATION AS THE
MINIMUM METHOD OF HIERARCHICAL CLUSTERING

PFNET(R =o0,0 =N —-1) IS THE UNION OF ALL MINTREES

PFNET(R,.Q) IS A SPANNING SUBGRAPH OF PENET(R ;,0)
IFF R <R,

PFNET(R ,0,) IS A SPANNING SUBGRAPH OF PFNET(R,Q ;)
IFF Q0 <0,

MONOTONIC TRANSFORMATIONS PRESERVE
STRUCTURE FOR ALL PFNET(R =o,0 )

MULTIPLICATIVE TRANSFORMATIONS PRESERVE
STRUCTURE FOR ALL PFNET(R, Q)

17




OPEN PROBLEMS

CLASSIFICATION

METRICS
STRUCTURE
EDGE LABELS
STABILITY
LEVELS OF ABSTRACTION

GRAPHICAL REPRESENTATIONS

SEARCH
SPECIALIZED DATABASES
SPREADING ACTIVATION

MATCH CRITERION

EXPLOITING PARALLELISM
SEARCH

CLASSIFICATION

18




APPLICATIONS FOR PATHFINDER-BASED
ASSOCIATIVE NETWORKS
I. INTERFACE DESIGN

HYPERTEXT BROWSER (HYBROW)
DOMAINS: UNIX CONSULTANT, INCIDENT DATABASE

INFORMATION RETRIEVAL (PATHTRIEVE)
DOMAIN: ABSTRACTS OF DOCUMENTS

MEASURE OF PROXIMITY: CO-OCCURRENCE OF CONCEPTS

II. DATABASE ORGANIZATION

ROBOTIC VISION SYSTEM
DOMAIN: FOURIER VECTORS OF OUTLINES OF OBJEC"

MEASURE OF PROXIMITY: L2 NORM DISTANCE

19




The Typicael Friendly User Interfoace .. ..

@

i
Gy

CROSS THAT LINE

AND I'LL .....

20
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GOAL:

REQUIRES:

COMPUTER VISION

SCAN THE ENVIRONMENT AND MAKE DECISIONS
WITHOUT HUMAN INTERACTION

KNOWLEDGE REPRESENTATION

CLASSIFICATION

ABILITY TO DESCRIBE SCENE
RECONSTRUCT SCENE
ENHANCE SCENE
MODIFY SCENE

27




DEFINITION OF AN
EMPTY-NEIGHBORHOOD GRAPH

An ENG is a graph in which a link l,-J- is in the ENG if
and only if an open neighborhood associated with N; and

N; is empty of all other nodes (points).

If each pair of nodes determines a unique neighborhood, then
the graph is referred to as a single-neighborhood ENG.

If each pair of nodes determines a set of possible neighborhoods,
then the graph is referred to as a family-neighborhood ENG.

N\
VAN
AN
N\

\

A FAMILY NEIGHBORHOOD

28




GENERATION OF A PROXIMITY GRAPH

SET OF POINTS

L,

COMPUTE ALL LUNES
AND GENERATE GRAPH

L,

COMPUTE W MATRIX
AND GENERATE PFNET(R ,Q)

29




RELATIVE NEIGHBORHOOD GRAPHS

DEFINITION: N; AND N; ARE LINKED IN RNG (L) IFF
d(N;,N)) <d(N;, Np)
OR

dWN;,N;)Sd(N;,N,) FOR ALLN,

PATHFINDER NETWORKS -

DEFINITION: N; AND N; ARE LINKED IN PFNET (L 4, 2, 2) IFF
d(N;, N;) < MIN[ MAX[ d(N;, Np), d(N; NI

FOR ALL N,

THEREFORE RNG (L,) = PFNET(L,, o, 2)

30




N Bl N B N B BN v BN e

GABRIEL GRAPHS

DEFINITION: N; AND NJ- ARE LINKED IN GG (L 2) IFF
2
dij < [d:'k 2_{_dlcj 2]1/

FOR ALL N,

Ny

PATHFINDER NETWORKS

~ DEFINITION: N; AND N; ARE LINKED IN PFNET (L, 2, 2) IFF
d;; < MIN[ MAX[dy 2+d;; 2L/

FOR ALL N,

THEREFORE MGG (L,) = PFNET (L ,,2,2)

31




DELAUNAY TRIANGULATION GRAPHS

DEFINITION (O’'ROURKE): N; AND N ; ARE LINKED IN
DTG (L) IFF THERE EXISTS AN OPEN BALL B WITH

BOUNDARY S SUCH THAT:

1. S PASSES THROUGH N; and N;, AND

2. B IS EMPTY

32







x,,%)

J7= L0x: -x)"+ (% -Yﬂ%* [(Xai -X)* (vz-9)"]

THE LUNES OF

PFNET(L,, r, 2)

34
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A HIERARCHY OF

EMPTY NEIGHBORHOOD GRAPHS

PENET (L 5, o0, N-1)

RNG (L,) = PFNET( 5, o, 2)

PFNET (L, 7, 2)

GG (L,) MS/NET L-)

%
MGG(L,) = PFNET(L,,2,2) ~

DTG (L)

PFNET(L,, 1, )

EACH GRAPH IS A SPANNING SUBGRAPH

OF THE GRAPH BELOW IT

35




Centrality in Proximity Graphs

Fred Buckley
Mathematics Department
Baruch College (CUNY)
New York, NY 10010

Abstract

Over the years many different centrality concepts have been
developed. Their most important use in applications has been in
facility location problems. In these problems, one typically
wants to determine a "good" location for a proposed facility such
as a police station, hospital, power station, telecommunications
switching center, or a collection of railway depots. Which
centrality concept to use depends on the application. We
discuss centrality concepts and indicate approaches for their
determination in proximity graphs. Recent results for two
different types of centers of polygons are also described.

36




[ he eccentricily of a

Vertex V IS ‘Z’/)e a’lsi‘ance

to a vertex farthest From
v .

The center of a graph
G 1S the set of vertices

that have minimum
~eccentricity.

Notation ey

-P--"'—.--_-
]




We call (C(G)) the

Cem‘:‘m/ subgme/w of

o ..;iz:./?neo rem (To rcﬁa n, I%?) If
o C& z‘ree fhen (c( T» =
S Ker K;.. .

PO W U U,

,Q-;----
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O() algorithms For C(7)
0673) algort't"zm_ for C(G)

-y - 39.
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7%: C@ﬂZLﬂ' of any Connected
- graph lies in a block.
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A useful tool
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For each vertex v.in a 1V
~ connected graph G, et .
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vertices at distance ( !
from v. The distance lis4
' i

ot v IS the Sequence .
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> .

~ The distance degree secguenc;
o for G s the ~Seguence ofy
 distance lists for the
- vertices of G, :
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ABSTRACT

Rectangle Proximity Graphs and Rectilinear Shortest Path Problems

D. T. Lee
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201

We introduce the notion of rectangle proximity graph for a set of points in the plane. Given a set
S of points in the plane, two points p and q are connected by an edge if the corresponding rectangle
defined by p and q does not contain any points of S in its fnterior or on the boundary. The induced
graph is called a rectangle proximity graph. It is shown that the rectangle proximity graph can be used
to solve the rectilinear shortest path problem between two points in the presence of (rectilinear) obta-
cles. Although the proximity graph on a set of n points may have O (n ) edges, an appropriate
representation, called shortest path preserving graph (SPPG), with O(nlogn) vertices and edges can be
obtained so that the rectilinear shortest path problem can be solved in O (nlojg ) time.
0 (nlog 32)Y time algorithm can also be obtained with a SPPG of size O (nlog ).
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RECTANGLE PROXIMITY GRAPHS
and

RECTILINEAR SHORTEST PATH PROBLEMS

" D.T. Lee

Department of Electrical Engineering
and Computer Science
Northwestern University

Division of Computer & Computation Research
National Science Foundation
Washington, D. C. 20550
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Rectangle Proximity Graph - RPG

Graph G = (V, E) in which V is a set of n points, p;,1 =1,2,....,n
in the plane, and two points p;, p; are connected by an edge

(pi,pj) € E, iff the rectangle R;; determined by these two points is
empty, 1.e., no other point in V liesin R; ;.

Disk Proximity Graph — Gabriel Graph (GG) | i -
Graph G = (V, E) in which V is a set of n points, p;,i=1,2,...,n
in the plane, and two pointsA Pi, p; are connected by an edge

(pi,p;) € E, iff the disk D;; determined by these two points is
empty, i.e., no other point in V lies in D; ;.

Lune Prox1m1ty Graph Relative Nelghborhood Grapl
(RNG) 7 '

Graph G = (V, E) in which V is a set of n points, p;,t =1,2,...,n
in the plane, and two points p;, p; are connected by an edge

(pi,p;) € E, iff the lune L;; determined by these two points is
emptly, 1.e., no other point in V liesin L; ;.

Circle Proximity Graph — Delaunay Graph (DG)

Graph G = (V, E) in which V is a set of n points, p;,t1=1,2,...,n
in the plane, and two points p;, p; are connected by an edge

(Pi, p;) € E, iff there exists a circle K; ; passing through these two
points is empty. i.e.. no other point in V lies in Ki;-

; ! /‘
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Lune Proximity Graph — RNG C Disk Proximity Graph— G¢(

Disk Proximity Graph — GG C Circle Proximity Graph— DC
(Matula & Sokad )

‘ S l’\G\ oy A C‘“‘ <
Circle Proximity Graphs can be computed in O(n log n) time. (Lcc ggdwg

Lune Proximity Graphs can be computed from DG in O(na(n)) time. |
<S"f°‘“’+ / (J‘*”"’Czyk 2 ch«u

Li-metric (or Loo-metnc ( 0 Roucke, et )

RNG C GG C DG C RPG

P-skelone G (V) gz (Kikpotick X Radke)

N(r8.8) o indersechin of cirches of radiia $di
W,trouz/ (l——)IP +(—)‘3 and.
i+ -£)e

(PL:P,) € E ;H M('ﬂ,g'@) A ;,%

@: A Gebriel Gmf‘»

32 RNG
P-l,..zkefubm(i!@ﬁ 1) can he compilad Fom DG in 0&);&“‘
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Algorithm RPG for a set of poiuts

Complexity O(n login) + K, K is the output size.
Divide-and-Conquer Approach

Step 1 Divide S into two subsets S; and S> by a vertica.l line V.
Step 2 Recumlvely bulld the RPG’s for S; and for S,.

.. Step 3 Construct edg% connectmg points in .S; and in S, as follows.

Step 3.1 Scan the points in S from bottom up, and main* ain a
‘staircase’ for each point in S; and in Ss. -
Let S; and S, denote the sets of staircases for points in S;
and in S, respectively.

Step 3.2 If the next point p; is in S;, consult the staircases in
S, and decide if an edge is to be introduced for p; and
points in Ss.

Step 3.3 If the next point p; is in S, consult the staircases in
S; and decide if an edge is to be introduced for p; and
points in S;.

Note: Only the topmost point of each staircase is needed.

T() = 3T(CA)+ o)+ K
(ivsl-?) ~ &
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Rectilinear Shortest Path Problem

Given n isothztic rectilinear obstacles Ry, Ry, ..., R,, each with a
positive weight R;.w,2 = 1,2,...,n, and two distinguished points s
and ¢, in the plane, find a shortest rectilinear path connecting s and ¢.

Definition 1

Let II,; denote a rectilinear path connecting s and .

. [ is denoted as: qi,pr1, g2, P2, g3, P3 - - - Gk, Pk, Where g; is a subpath

outside any obstacle, and p; is a path completely within R;.
g, or p, may be empty.

Weighted length: _
k
dw(Ily) = (qul +|pil) + L (Riw * |pil)-

=

Note: Collision Free Path: R;.w = oo for all :.
=¢,1=1,2,...,k.

Optimal Path: II3,

[

Path Length: dws},
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V' = set of vertices of obstacles R; U {s, t}.

I = set of internal projections
{Prs Pt Pu; alp @ concave vertex}
U{gr: 91, Qu, alq € {s,t}, 9 € Ri}

2DV =Vul.
Definition 2

Point p 1-dominates point ¢ iff p.x > g.z and p.y > q.y.
Point p 1-directly-dominates point g iff there exists no pointr
such that p 1-dominates r» and r 1-dominates q.

Definition 3

A vertex p of obstacle Q is 1-directed iff the boundary edges
incident on p are in the +X and +Y directions, abbreviated as
(+X,+Y) directions. Similarly, we define 2,3 and 4-directed vertices
if the boundary edges are in (+Y,-X), (=X, -Y) and (+X,-Y)
directions respectively.

Definition 4

ForpeV, Si(p) ={qlg eV and
q i-directly dominates p¥’}.
S(p) = Ui Si(p)- €
A;(p) = {q|q i-dominates p, and
q does not i-dominate r,r € S;(p)}.

A(p) = U; A,(p)

\ 66

i-(directly)-dominating relations are defined similarly : = 2, 3, 4.

i-staircase SC;(p) = boundary of region defined by A;(p).
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Lemma l

A(p)nV = {p}, i.e., A(p) contains no point of V except p itself.
Lemma 2
Ai(p),i = 1,2, 3,4 satisfies one of the following properties:
1: A;(p) is totally outside any obstacle,
2: A(p) is totally within an obst_acle;
A;(p) contains only vertical strips, or N
A;i(p) contains only .horizonta.l strips.
Lemma 3

Let p be a concave vertex of cbstacle Q with internal projections p,
and p,. Then A;(p),7 =1,2,4 are all within Q and both As(p) and
A4(p) are rectangles.

Lemma 4

Let p be an i-directed convex vertex of Q.
A;(p) is a rectangle within Q. Other symmetric cases hold.

Lemma 5

Consider an internal projection, say pq, of a concave vertex p of Q.

Both A;(ps) and Ay(py) are rectangles within Q. Other similar cases
hold.

Lemma 6

If s (resp. t) lies in Q, A(s) (resp. A(t)) lies in Q.

68




Lano. 3




/ Lemma 7 '
Consider a rectangular area R in obstacle ), and let r € Q. Then fcl

any point q € int(R), there exists a shortest path II,, that passes
through one of the projections r,,r4, 7, or 7, on bd(R).

Thy
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Theorem 1

For any two points u,w € V, w & A(u), there exists a shortest path,
[Tz, that passes through at least one point of S(u).

Proof: Consider only the cases in the 1st quadrant with u being the
origin.

Let p and q be two consecutive points in S)(u). Assume that

I, = I ||II%,,, where r € SC\(u) lies on horizontal part between p
a.nd g, and II?,. totally lies in A;(u).

Let p/ be the left projection of p on the Y-axis

- ~ Case 1 A;(u) outside of any obstacle.

Case 2 A;(u) contains only vertical strips.
Case 3 A;(u) contains only horizontal strips.

Case 4 A,(u) totally lies in an obtacle Q.
This case is more complicated.

Case 4.1 u is a concave vertex.

case 4.1.1 u is 3-directed.
I, = wliFr.

case 4.1.2 u is 2-directed.
A;(u) is a rectangle R, and p/ = p.
I1;, =up||pr

case 4.1.3 u is 4-directed.
If p7 lies on bd(Q@), done.
Since A;(u) is a rectagle (u,q,m,l) € Q, from Lemma 7,
[T}, must pass though one of the following:
(a) Through r4: Impossible.
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(b) Through r,: TIy ||y, = wgllgrIIL;,,
(c) Through r,: II;,||II%, = ull|overlinelr,||IT} ,
(d) Through r; = p: Done.

Case 4.2 u is convex.

Case 4.3 u € I. Similar to Case 4.1.3.
Case 4.4 u € {s,t}. A(u) €Q.
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Algorithm RSP- Graph-Theoretic Approach

Step 1 Compute V =V ulI.

Step 2 Compute for each v € V its staircase SC(v).

Step 3 Compute the Graph G = (V, E), where
(v,u) € E if u € SC(v); assign welght to each edge.

Step 4 Apply Fredman/Tarjan’s algorithm on G. ===

In the worst case E has O(n?) edges and it needs Q( 2) time to .'
“construct G. '

(e\a- ML‘]M)
O(nteg®) %= OGlbp) spe

O(“\gihn) T 2 gr‘\&
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Construction of Weighted Graph G’

e Draw a vertical "cut” line V through the median of the
X -coordinates of all the points in V.
A horizontal cut line is drawn similarly. (Only vertical case is

given.)

e Let V; and Vx denote the vertices of V that lie to the left and
right of V respectively, and Vs the vertices of V that lie on V.
For each point p € VU Vg, if p is visible from V, we create a
Steiner point p’ and the edge (p, p) € E with weight equal to
Pl | ' |
We create for every two consecutive pomts on V an edge in E
with weight computed using a plane sweep method.

e Recursively do the same thing on the sets V; and V5 respectively.

Compute the weights of edges connecting two consecutive points on
every cut line V,, 1 =1, 2 N by pla.ne sweep

.‘- :' . 3
l"

step 1 Preproc&s the obstacles by partltlomng each of them into
rectangles by introducing horizontal segments.

step 2 Sweep downward the ordinate of of those Steiner points and
horizontal edges of the rectangles in the order of !, p and u.
Consider, the Steiner points that are on some cut line V;, with
which two attributes V;.w and V,.s are associated.
V;.w = the accumulated weight and
V;.s = the last swept Steiner point on V;.
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step 2.1 When the sweep line reaches an upper edge (u) of a
rectangle, do nothing.

step 2.2 When it reaches a lower edge (I) of a rectangle, add

the weight of that rectangle (i.e., the product of the weight
and height of the rectangle) into V;.w.

step 2.3 When a Steiner point (p) is reached, we can calculate
the weighted distance between it and the last one (recorded in
V;.s); set V;.s to the current Steiner point and reset V;. w.

Lemma 9

The graph G = (Vz1, Egr) generated in algorithm RSP has
O(nlogn) vertices and edges.

Theorem 2

Algorithm RSP runs in O(nlog® n) time and O(n log n) space.

Bottleneck of Algorithm RSP: Size of graph is O(nlogn).
Consequently, steps 3 and 4 run in O(n log? n) time.
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Alternative Approach — Trading #vertices with #edges

Idea: Partition the points in each recursive step into strips
such that each strip contains y/logn points.

Need much fewer Steiner points.

For points in the same strip, we create edges between all pairs.

As a result, # vertices is O(n log'/2n), and # edges is O(n log®? n).
Algorithm RSP’- O(nlog 3/2 ) Time and Space

This algorithm is the same as RSP except that we replace step 3 by
the following:

3. (Construct Steiner poinfs and add extra edges)

3.1 Partition the points into horizontal strips such that each
strip contains O(+/log n) points, where n is the total number
of vertices.

Divide the points by a line V with V.z equal to the median of
all the X -coordinates of the points.

In each strip, we keep only the two extreme Steiner points,

f u) f d-

Insert edges between the two Steiner points and the
corresponding points.

3.2 (Construct edges in each strip)
Let H denote the set of points horizontally visible from V
and [y, fa.
Let H.l denote the set of points in H that are on V and to
the left of V, and let H.r denote the set of points in H that
are on V and to the right of V.
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3.2.1 Calculate the weighted path length between every two
consecutive potential Steiner points (projections of points
in H) on V.

3.2.2 Create a table storing the weighted distance between
every pair of points in H using results obtained in step
3.2.1.

3.2.3 With the table we construct a new table storing the
weighted distance between each pair of points one in the
H.l and the other in H.r.

3.3 Do the same thing recursively to the set of points to the left
and to the right of V. :

Lemma 10

The graph G = (Vg, Egr) generated in Algorithm RSP’ has
O(n+/Tog n) vertices and O(nlog*? n) edges. Proof:

There are O(25) strips, each containing O(+/Togn) points. The
total number of strips is O(n+/logn).

Only 2 Steiner points per strip are added to V.

The number of edges connecting Steiner points and the points from
which they are projected is O(n/logn).

The number of edges that are constructed for the points in each strip
is O(logn).

Thus the total number of edges in E¢ is O(nlog*? n).

Theorem 3

The algorithm RSP’ computes the shortest path from the point s to
the point ¢ in O(n log¥? n) time and space.
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Open Problems
e Can one compute the shortest path in O(nlogn) time and O(n)
space?

e What if the obstacles are of arbitrary shape?

- —o-Car RP-G-be-computed in-Ofn logn) time-+ K2 - - —~

i
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(Weighted Segment Trees

Segment trees for a set of intervals on the real line with n endpoints
normalized to integers in the range [1,n + 1).

Given integers I, 7,1 < r, segment tree T'(l,r) is recursively built as
follows:

It consists of a root v, with attributes v.B =1 and v.F = r, and if
r —1>1, of a left subtree T'(, [B—MJ) and a  right subtree

lu Biv EJ 1‘)

1)81-\! J

T(L vy T (ww,r)

standard intervals:
[v.B, v.E) for each node v.
elementary intervals:

[1,1+1),[1 +1,1+2),...,[n,n + 1) - leaf nodes

For r — 1 > 3, an arbitrary interval [b,e), b < e, is partitioned into a
collection, called canonical covering of (b, e), of at most
[logy(r — 1)] + |logy(r — 1)] — 2 standard intervals of T'(1, r).
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Basic operations performed on the weighted segment trees include
addw: ‘adding a weight to a given interval’

resetw: ‘resetting (to 0) the weight of a given interval’ and

getw: ‘getting the accumulated weight of a given elementary
interval.’

resetw(v:interval,u:node,wsum:int)
begin |
if u is reset-marked then begin
1s(u).w =rs(u).w =0
mark 1s(u) and rs(u)

unmark u
end
if (v.B <= u.B and u.E <= v.E)
then begin

mark u

u.w = -(wsum);

end
else begin

WsSum = wsum + u.w
if (v.B < u.M) then
resetw(v,1s(u),wsum)
if (u.M < v.E)
resetw(v,rs(u),wsum)

end

end
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addw(v:interval,u:node,weight:int)
begin
if u is reset-marked then
begin
1s(u).w =rs(u).w =0
mark 1s(u) and rs(u)
unmark u
end S o
if (v.B <=u.B and u.E <=v.E)
thenm u.w = u.w + weight
‘else begin =~ o
if (v.B < u.M) then
addw(v,1s(u),weight)
if (u.M < v.E) then
addw(v,rs(u) ,weight)
end
end

getw(ev:int,u:node)
begin
if (u.B =ev and u.E =ev + 1)
then return(u.w)
if (u is reset-marked)
then return(u.w)
if (ev<u.M) then
return(u.w+getw(ev,1s(u))
if (ev>u.M) then
return(u.v+getw(ev,rs(u))
end
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Path Weight Restructuring in Communication Graphs

Michael Lightner
University of Colorado
Boulder, Colorado

The abstract and transparencies for this talk were not available.
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Assessing Similarity of Pathfinder Graphs

Daniel M. Davenport
Timothy E. Goldsmith
Peder J. Johnson

December 1, 1689

1 Abstract

In this talk we present several graph similarity measures for assessing the
similarity of Pathfinder graphs. This work was motivated by the desire to
measure the similarity between a graph representing a student's knowledge
(a knowledge structure) and that of the instructor's. Our measures compare
connected, labelled graphs, such as knowledge structures and other graphs
produced by Pathfinder. Other graph similarity measures have been proposed
for various other applications but none are suitable for our purposes.

We first give some background and make the hypothesis that knowledge
structures model a student's knowledge of a subject. To verify this we define
several graph similarity measures and with them measure the similarity of a
student's knowledge structure with that of the instructor's. We then correlate
this with that of the student's final grade. The resulting positive correlations
verify our hypothesis. We also show that neighborhoods in knowledge
structures are a more important feature for modeling knowledge than distance
between nodes. The success of our measures in predicting students' final
grades gives us hope that these measures have applicability to proximity
graphs in general.

89




Assessing Similarity of
Pathfinder Graphs

Daniel M. Davenport
Timothy E. Goldsmith
and
Peder J. Johnson
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Talk Outline

1. Introduction and Background

2. Approaches to Graph Similarity Measures
3. Definitions of our Graph Similarity Measures
4. Application to Knowledge Structures

5. Properties of our Graph Similarity Measures

6. Topics for Further Research.

91




Background

* Students in a class are asked to rate the
similarity of pairs of concepts they've learned.

* For each student these raw similarity ratings
are fed into the Pathfinder algorithm.

* The result is a connected, unweighted graph,

known as a knowledge structure, for each student.

* An instructor can visually compare his own
knowledge structure to that of a student's and can
sometimes pick out the students that know the
subject.
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Hypothesis

* The pattern of edges of a knowledge structure
models what a student knows.

* That is, Pathfinder extracts from the raw
similarity ratings important features of a
student's knowledge.
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The Problem

* Find an objective way to compare an instructor's
knowledge structure to that of a student's.

*That is, find a function that takes two graphs and
returns a number that reflects their "closeness”.

* Such a function is a graph similarity measure.

* A good graph similarity measure is one that
verifies our hypotheses.

* Thus, we must find a good graph similarity
measure.

* Keep it simple.
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Some Graph Similarity Measures
in the Literature

* Herndon
* Compares molecules.
* Computes longest paths in graphs (hard to do).
* Paths are converted to linear codes which are

then compared.

* Basak et al.

*Compares molecules.

* Measures similarity of graph-theoretic indices
of each graph (such as, the number of nodes,
the degree of sequence, the number of paths
of length k).

* Combines this data using complicated
information-theoretic techniques.

* Graham, Ulam
* Compares abstract graphs.
* Graphs must have same number of edges.
* Partitions graphs into minimal number of

pairwise isomorphic pieces.
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Our Approach

* The graphs we wish to compare are:
* connected
* unweighted
* and have a common node set.

* Thus, we already know which nodes correspond
between the graphs.

* This suggests three approaches:
* Base the measure on the similarity of the
(nonempty) set of neighbors of corresponding

nodes.

* Base the measure on the similarity of the
incidence of pairs of corresponding nodes.

* Base the measure on the similarity of the

minimal path length between pairs of
corresponding nodes.
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Preliminary Definitions

Let G be a connected graph and v, v' nodes in G.

Define G, to be the set of nodes in G that are neighbors
of v (i.e., incident with v).

Note that G, is not empty since G is conrected and note
also that vis notin G,,.

Define G(v,Vv') to be 1 if v is incident with v' and 0
otherwise.

Define 55(v,v') to be the distance from v to v'in G.

This is always defined since G is connected and is
never 0.

For x, y > 0, define x 6y to be x/y if x<y and y/x
otherwise.

Let A and B be connected graphs with a common node
set V. Suppose further that the elements of V are

linearly ordered.
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Neighborhood Based Measures

1 |AvﬂBv|
Ca(A,B) = |V|v§/(l Ay | +1B,])/2

1 A,NB, 1 A,N B, |
5 PRSES

1
C3<A’B)‘§(|V|vev A, TIV1& 1B )
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Incidence Based Measures

! S | A(v, ") - B(v,v) |

C4(A, =1-
B =1 vie &

C7(A, B) = Correlation coefficient of A(v,v') and B(v,v')
for all pairs of nodes v, v’ with v < v/
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Distance Based Measures

L 3 64(v,v") 0 (v, )

Cs(A,B) = =
B =TI &

B 1 | 6a(v,v") — ép{v, ") |
V=1V ])/2 vew 6a(v,v') + 6p(v,v")

Cs(A,B) =1

Cs(A, B) = Correlation coefficient of 6,4(v,v") and ép(v,v')
for all pairs of nodes v, v’ with v < ¢/
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Testing our Hypothesis

* 20 students and the instructor of a class assessed the
similarity of 30 concepts from the class.

* 435 pairs of concepts were rated on a scale from 1
(least similar) to 7 (most similar).

* These raw similarity ratings were processed by
Pathfinder to produce a knowledge structure for each
individual.

* For each C,, the similarity of each student's

knowledge stiucture and the instructor's were
measured and then correlated with the student's final
course grade.
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Neighborhood
Based

Measure

Incidence
Based

Measure
Distance

Based
Measure

Conclusion:

The Correlations

Cy=.77
C4 = .38
C8 = .65

The patterns of edges of a knowledge
structure model what a student knows if
final course grades do.
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New Hypothesis

* Neighborhood based measures are better for
assessing a student's knowledge than distance based
or incidence based measures.

* That is, neighborhoods of concepts in knowledge
structures are a more important feature than distance
or incidence in modeling knowledge with knowledge
structures.
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1esting cur Hypothesis

* Using partial correlations we can remove the shared
contribution of a measure from every other measure
and thereby examine the unique predictiveness of
the first measure.
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Partial Correlations

Removing C, from C, - .73

Removing Cg4 from C, - .53

Removing C, from C, - .09

Removing C4 from C, - .11

Removing C, from Cg4- .14
Removing C, from Cg4- .57

Conclusion: Neighborhoods of concepts in
knowledge structures are a more
important feature than distance or
incidence in modeling knowledge
with knowledge structures.
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Further Properties

* For each C, let D;=1-C,. Then Dy, D,, Dy, Dg, and Dy
are all metrics on the space of graphs with a common
node set V, while D is not.

* We can think of graphs with a common node set V as
subsets of VxV. Form the Boolean ring obtained by
defining multiplication by intersection and addition by
symmetric difference. The multiplicative identity, |, is
the completely connected graph and the zero element
is the graph with no edges.
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If we define % = 1 then D; is a metric on this space.

For a graph G over V define:
|G || =1- Dy(G,I)=Cy(G,I)

Then for all A, B, C graphs over V' we have:

JAUB|+|]AnNB| =] Al +|l B
L-ffAll=1lAll
lAeB|<[lAll+]|| B
lANBI <|lAll
lAeBll+|lAeC|<|[BaC]||
where A is the complement of A.

It turns out that || A@® B || = Dy(A, B).
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Topics for Further Research

* Generalize our measures to measure similarity of
molecules.

* Find applications of these measures to general
proximity graphs.

* Find features of knowledge structures other than
neighborhoods that are important in assessing
student's knowledge.

* Develop a neighborhood based graph clustering
technique.

108




ABSTRACT

Generating Large Pathfinder Networks

Govinda Kurup
Xerox Corporation
Webster, NY 14580

A geometrical approach to the Pathfinder algorithm which reduces the actual
number of computations by half is presented. In the original algorithm, for every
pair of nodes the path length via an intermediate node is computed. The number of
intermediate nodes considered is n-2 (where n is the total number of nodes), for each
pair. The essence of the current approach lies in presorting the distance matrix by
which the number of intermediate nodes inspected is reduced to (n-2)/2. The method
is general and works for any value of the r-metric and gq-parameter. The saving in
actual computation time for large PFNs is substantial.

The transparencies for this talk were not available.
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ABSTRACT

Integrity Considerations in Graphs

Lowell W. Beineke

Indiana University - Purdue University at Fort Wayne

The vertex-integrity of a graph is defined to be I(G) := min (X + m(G-X)), where the minimum
is taken over all proper subsets X of the vertex set and m(G-X) denotes the largest order of a com-
ponent of G-X. The edge-integrity I'(G) is defined similarly, and both parameters are measures of a
graph’s vulnerability to disruption when elements of the graph are destroyed. This talk presents aspects
of integrity that might be useful in analyzing proximity graphs, and in particular these topics: (1)
bounds and algorithms for trees and other planar graphs, and (2) the diameter of a graph.
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A TALK OF INTEGRITY

EDGE -INTEGRITY AND DIAMETER
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How SHOULD THE VULNERABILITY oF

A COMMUNICATION NETWORK BE
MEASURED ?

ONE WAY IS TO USE THE CONNECTIVITY
OR THE EDGE-CONNECT!VITY,

THESE ARE NOT SENSITIVE TO WHAT
REMAINS AFTER KEY ELEMENTS ARE

DES TROYE D,

For ExpmrLe, A=l

i,
y \\\ e
(I‘ 4
i
2
/)
\ i ¢ ,

112

-




W

Ir oNE IS INTERESTED IN DISRUPTING

COMMUNICATION, IT IS DESIRABLE To
HAVE TWo QUANTITIES SMALL.

(1) THE NUMBER OF ELEMENTS DESTROYED

O.i) THE SIZE oF THE LARGEST GROUP
THAT CAN STILL COMMUNICATE.

BAREF00T, ENTRINGER, AND SwART

INTRODUCED A MEASURE oF How
SUCCESSFYLLY THIS CAN BE DoNE,

(VER rex-)INTEGRITY

TCG) = min LIXI + m(G-X)}
X<V

WHERE m(G=X) 1s THE orRDER oF A
LARGEST CoOMPONENT OF G"X.

I(&/f’ =‘,‘3 I(?F.):l
Z(Ka&n%Z I(Km)f‘ |+ £ rsa,
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Coloring Proximity Graphs

Bob Cimikowski
New Mexico State University

Abstract

We examine coloring problems for various proximity graphs.
The chromatic number problem is that of finding the minimum
number of colors to assign to the vertices of a graph so that adja-
cent vertices have different colors. ‘1ne minimum coloring prob-
lem is to find a minimum assignment of colors for a graph. Both
are hard problems for arbitrary graphs as well as planar graphs.
For proximity graphs, the problems have applications in
transmitter frequency assignment and event scheduling. The
problems are also of theoretical interest in the field of algorithmic
computational complexity.

The Eroximity graphs investigated are Relatively Closest
%ralphs, elative Neighborhood graphs, Gabriel graphs, _and

elaunay graphs. e restrict the graphs to 2-dimensional
Euclidean space, for which they are all planar.

Our results include a linear-time test for the chromatic number
of a Delaunay graph and a linear 3-coloring algorithm, an exact
linear 4-coloring algorithm for Relatively Closest graphs, a 4-
coloring heuristic for Relative Neighborhood graphs with remark-
ably good performance, and two minimum-coloring heuristics for
Gabriel graphs which outperform other methods on the same set
of test graphs.

We conclude with a number of open problems and sugges-
tions for further research.
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Coloring Proximity Graphs

Theoretical Issues.
Applications.

Delaunay graphs.

Relative Neighborhood graphs.
Relatively Closest graphs.
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Applications of Proximity Graph Coloring:

1. Minimum frequency assignment
e n data sampling stations, transmitting at same power.
e neighbors must have different frequencies to avoid
interference.

2. Event scheduling at geographic sites.

e events cannot occur simultaneously at neighboring sites.
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Families of Proximity Graphs

Euclidean distanice metric:

N
dwuy)=Nui—vi)2+ (uy—vy)?

Relative Neighborhood Graph (RNG)

"lune of infiuence (open)"

Relatively Closest Graph (RCG)

"lune of influence (closed)"

oW
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Gabriel Graph (GG)

circle of influence”
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Delaunay Graph (DG)

Voronoi Diagram - partition of plane and points P
into polygons V(p), for each peP".

Vip)={x:dx,p) <d(x,q),for each p#q,qeP}.

Delaunay Graph = straight-line dual of Voronoi
Diagram.

{u,v},{vw} and {u,w} are edges of the DG iff
circle (u,v,w) 1s empty.
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Combinatoriai Properties of Proximity Graphs

Pl. Planar; e <3n-6.

P2. DG is inner-triangulated and 2-connected.

P3. RCG forbidden subgraphs: K3, K 3.

P4. RNG forbidden subgraphs: K4, K23, Wy, n <5.

P5. GG forbidden subgraphs: K4, K33, W,,n <5.

Theorem 1 [Toussaint]. For any nondegenerate set of points V,
1) MST(V) c RNG (V) c GG (V) c DG (V).
2) RCG (V) cRNG (V) c GG (V) c DG (V).
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Theorem 2 [Haken and Appel]. Every planar graph is 4-
colorable.

Theorem 3 [L. Stockmeyer]. 3-colorability is NP-complete for
planar graphs.

Fact. Any planar graph can be 4-colored in ©(n?2) time.

-- but the method is impractical!

Fact. Any planar graph can be 5-colored in linear time.
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Theorem 4.1. [Saint-Lague]. A maximal planar graph is 3-
colorable iff all vertices have even degree.

Theorem 4.2. [Cimikowski]. A Delaunay graph G is 3-colorable
iff all interior vertices have even degree.

--implies a linear-time test for (G ).

Fact. Any 3-colorable Delaunay graph G is uniquely 3-colorable
(i.e., every 3-coloring induces same partition of V(G)).

--leads to linear-time 3-coloring algorithm.
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Open Problems:
1. Complexity of Gabriel graph 3-colorability?

2. Complexity of Relative Neighborhood graph 3-colorability?
Conjecture: both NP-complete.

Proof: difficult without a combinatorial characterization of the
graphs.
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4-Coloring Heuristic for Relative Neighborhood graphs

IFact. The minimum degree of any planar graph < 5.

Recursive Reduction Coloring:
Key steps:
1. delete minimum degree vertex.

2. 1dentify pairs of nonadjacent vertices.

identification of vertices u and v: <u,v>
--merge A [u] into A [v] and delete u from G.

a v v W X
w A%.\&‘\*c. U ~
£V, 9>
S5(6)=14%
(2) LV, X, 2Y
dalele K A
LU, X, 2D

151




a5 it Lo

Algorithm RNG_4color.

Delete minimum degree vertex u in G.

Stack u and identify 2 or 3 nonadjacent vertices.

Repeat steps 1-2 until <5 vertices remain.

Assign colors 1-4 to remaining four vertices.

Unstack and assign colors to remaining n—4 vertices of G.

il ol b e

Run-time Analysis:
1. all deletions require O (n) time.
2. all identifications require O (n2) time.
3. stacking/unstacking vertices requires O {n) time.

=>T(n)=0 (n?).

Performance: Successful on random RNGs and maximal RNGs
with n £200 vertices.

RNG Conjecture:
(1) The minimum degree of any RNG < 4.

(2) Every vertex with degree <4 has a pair of nonadjacent neigh-
bors with degree <k, for some constant k <n.

Open Problem: Can we 4-color RNGs in linear time?
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4-Coloring Relatively Closest Graphs (RCGs)
Forbidden subgraph for RCGs: K 3.

Theorem 5 [Cimikowski]. e (RCG)<2n-5.

Corollary 5.1. The minimum degree of an RCG is <3.

Reduction 4-coloring algorithm (exact):

while n >4 do
remove a vertex u with minimum degree (<3)
and stack u;
assign colors 1-4 to remaining 4 vertices;

while stack not empty do ]
remove vertex u from stack and assign a color
from 1-4 to u;

T(n)=0(n).
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Chromatic 4-Coloring 3-Coloring
Graphs Number (exact) (exact)
Planar graphs NP-complete 0(n?2) ?
DGs 0(n) 0(n2) 0(n)
RNGs 2 0(n2) ?
RCGs ? 0(n) : ?
GGs | ? _ Ofnz) ?

Table 1. Complexities of Coloring.

Improved heuristics have been found for:
(1) RNG 4-coloring.
(2) GG 4-coloring.

(3) RCG 3-coloring.
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Conclusions:
Forbidden subgraphs and relative sparsity make proximity
graphs easier to color than arbitrary planar graphs.

RCGs are easiest because of sparsity and minimum degree.

DGs are easier because of inner triangularity.

RNGs are somewhat easier because of sparsity and forbidden
subgraphs.

GGs are only slightly easier (not quite as dense).

Good average-case algorithms may be obtainable for RNGs
and GGs.

eave =1.27n and degree,y, =2.5 for RNGs.
eave =2n and degree,,, =4 for GGs.
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Future Research:

Find Kuratowski-like characterizations for proximity graphs.

Investigate other hard graph problems for proximity graphs:
e dominating sets, independent sets, edge coloring

Study other kinds of proximity graphs.

Investigate further relationships between PFrets and other
proximity graphs.
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Proximity Graphs in Computer Vision

Godfried Toussaint
McGill University
Montreal, Canada

The abstract and transparencies for this talk were not available.
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Dynamic Shape Graphs of Molecules

Paul Mezey
University of Saskatchewan
Saskatoon, Canada

The abstract and transparencies for this talk were not available.
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On k Relative Neighborhood Graphs

M. S. Changx, C. Y. Tang= and R. C. T. Legw=

* M. S. Chang is with the Institue of Computer Science and Information
Engineering, National Chung Cheng University, Chiayi, Taiwan, Republiic

of Chian.

(2. Y. Tang is with the Institute of Computer Science, National Tsing

Hua University, Hsinchu, Repulic of China.

< B. (. T. Lee is with the National Tsing Hua University, Hsinchu,

Taiwan and Academia Sinica, Taipei, Taiwan, Repulic of China.
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Abstract
A bottleneck optimization problem on general graphs with edge costs is the
problem of finding a subgraph of a certain kind that minimizes the maximum edge
cost in the subgraph. A Euclidean bottleneck optimization problem is a bottleneck
optimization problem on complete graphs which are constructed from a set of points
in the plane and whose edge costs are Euclidean distances between points connected
by edges. In this dissertation, we define a special graph called k—Relative
Neighborhood Graph , denoted as kRNG, where k is a positive number , and use it
tu sulve the following three Euclidean bottleneck optimization problems:
(A)  The Euclidean bot leneck matching problem.
(B) The Euclidean bottleneck biconnected edge subgraph problem.
(C) The Euclidean bottleneck traveling salesperson problem.
We prove the following three theorems:
(1)  For any instance of Problem A , there exists an optimal solution
which is a subgraph of a 17TRNG.
(2)  For any instance of Problem B, there exists an optimal solution which
is a subgraph of a 2RNG.
(3)  For any instance of Problem C , there exists an optimal solution
which is a subgraph of a 20RNG.
All numbers of edges of these three special graphs are O(n). Therefore we can find
optimal solutions for the above three problems from these three k—relative
neighborhood graphs. In this way, we can solve Problem A and Problem B in O(n?)
time, and also an efficient approximation algorithm for Problem C is developed. The

third theorem above gives us an interesting graph theoretic result: 20RNGs are

Hamiltonian.
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] The lune of two points on the plane

Let p and q be two points on the plane. Draw two circleswith radius dpq
(Euclidean distance between p and q) centered at p and q respectively as shown in

the following figure: p

J

The shaded area (not including its boundary) is called the lune of p and q.

-

Formaily, LUNpq = { x | x € R?, dpx < dpqand dgx < dpq }-
2. k Relative Neighbors

Given a set V of points on the plane, p and q are called k relative neighbors
if and only if

(YpeVandqeV,
and

(i) |LUNpq N V| < k.
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3. k Relative Neighbothood Graphs

Given a set V of points on the plane, connect two points if their lune
contains less than k points of V. The graphs constructed in this way are called 4
relative neighborhood graphs. Formally, kRNG = (V,E;) where

Ec={(p,q) | p qeVand [LUN,qNV| <k}

See the following figures {or examples:
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4 Properties of Relative Neighborhood Graphs (RNG)

The concept of k relative neighborhood graphs is generalized from that of
relative neighborhood graphs which was defined by Toussaint. In fact,
IRNG = RNG.

(1) RNG is connected.

(2) RNG is planar.

(3) There exists a minimum spanning tree which is a subgraph of RNG.

(4) There exists a bottleneck spanning tree (a spanning tree whose
maximum edge cost is minimized) which is a subgraph of RNG.

{5) The number of edges of » RNG is less than 3n—6 where n = |V].

5. Properties of k Relative Neighborhood Graphs

(1)IfV >k, then kRNG is k connected.

(2) The number of ecges of a kRNG is less than 18kn. In other words.

kRNGs are sparse when k is relatively smaller than n.

(3) For k > 20, kRNGs are hamiltonian.
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6. Applications of kRNG

Help to solve. the [ollowing three Euclidean bottleneck optimization

problems:
(1) The Euclidean Bottleneck Matching Problem.

(2) The Euclidean Bottleneck k—connected edge subgraph problem.

(3) The Enclidean Bottleneck Traveling Salesperson Problem.

7. The Euclidean Bottleneck Matching Problem

Given a set V of points on the plane, a Euclidean Bottleneck Matcking is a
perfect matching of V whose longest matched 2dge is minimized. The Euclidean
Bottleneck Matching Problem is, given a set V of points, to find a Euclidean

Bottleneck Matching.

Lemma: There exists a Euclidean Bottleneck Matching which is a snubgraph

of 17TRNG.

Since 1TRNG is a sparse graph, we can find a Euclidean bottleneck

matching from it more quickly instead from the complete distance graph of V.
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8. The Euclidean Bottleneck k—connected Edge Subgraph

Given a set V of points cn the plane, we can connect it into a k—connected
graph. This graph is called a Euclidean k—onnected edge subgraph (a subgraph of
the complete graph of V). A Euclidean k—onnected edge subgraph whose longest
edge is minimized is called a Eunclidean bottleneck k—connected edge subgraph.

Lemma: There exists a Euclidean bottleneck k—connected edge subgraph

which is a subgraph of kRNG.
Corollary: if n > k, then kRNG is k—connected.

9.The Euclidean Bottleneck Traveling Salesperson Problem

The Euclidean bottleneck traveling salesperson problem is to connect V
into a Hamiltonian cycle such that the longest edge in the cycie is minimized. Such
a cycle is called a Euclidean Bottleneck Hamiltonian Cycle.

Lemma: There exists a Zuclidean bottleneck Hamiltonian cycle which is a

subgraph a 20RNG.

Corollary: if k > 20, than 20RNG is Hamiltonian.
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ABSTRACT

Monotonic Search Networks (MSNETS)

Govinda Kurup (Presenter)
Xerox Corporation
Webster, NY 14580

Don Dearholt
Department of Computer Science
Mississippi State University
MS 39762

A new network called a Monotonic Search Network (MSNET) is presented. In these networks,
there is a monotonically decreasing distance function, and therefore a monotonic path, between every
pair of nodes in the network. After discussing the foundations, an algorithm for generating the MSNET
from the Relative Neighborhood graph of a set of nodes (by adding some edges) is given. An applica-
tion of the MSNET as the underlying structure for an associative database for computer vision is also
discussed.
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COMPUTER VISION

GOAL: SCAN THE ENVIRONMENT AND MAKE DECISIONS
WITHOUT HUMAN INTERACTION

REQUIRES: KNOWLEDGE REPRESENTATION
CLASSIFICATION
ABILITY TO DESCRIBE SCENE
RECONSTRUCT SCENE
ENHANCE SCENE
MODIFY SCENE
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ABSTRACT

GENIE: Rapid Prototyping for Network Models

Chris Esposito
Boeing Advanced Technology Center
Seattle, Washington 98124

Networks and graphs are very often used to model a wide variety of systems and phenoinena,
from telecommunications networks to the organization of human semantic memory. This presentation
describes a system called GENIE (General Extensible Network Interface Editor) that supports the rapid
construction of many different sorts of domain-specific network models. GENIE provides basic graph-
theoretic objects (nodes, edges, subgraphs, etc.) as primitive constructs and suppoits common attributes
such as object position, color, shape, and layout/manipulation functions. An object-oriented single-
inheritance extension language allows the user to attach arbitrary application-specific data structures to
objects, specify graphical constraints, and provide special layout or manipulation functions. A tailorable
user interface supports different interaction styles. An application interface allevs GENIE to be used as
a "graph server” for other applications that need a flexible graph display facility but do not want to
invest the effort to develop a custom system of their own. GENIE is being implemented in C++ and
Xscheme on top of X11/NeWS.
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GENIE
Rapid prototyping for Network Models

Dr. Chris Esposito
Boeing Advanced Technology Center
Seattle, WA
December 2, 1989
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GENIE-

General
Extensible
Network
Interface

Editer
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GENIE
Introduction

Network and graph models are useful in a wide variety of
areas:

Semantic Networks

Parse Trees

Process Management

Information Retrieval

Distributed File System Management
elc.
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GENIE
Introduction

A closer look at network-model applications
1. Common functionality/data-

position

color

type

shape
layout/manipulation
etc.

2. Application-specific functionality/data-

arbifrary data structures attached to objects
special structural requirements

special layout or manipulation functions
differing interaction styles

etcC.
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GENIE
Introduction

A closer look at network-model applications

2 different approaches to providing application-specific
functionality/data:

A. Build entire application in GENIE
- self-contained system
- e.g., ANETS

B. Front-end / graph-server for other applications

- need interapplication communication
- parse trees for an NLP system
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GENIE
Requirements

1. Provide a parts kit for common attributes & functions

2. Provide a means for customizing & extending GENIE

3. Provide » means for working with other applications
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GENIE
GENIE Architecture

1. Display engine

2. Tailorable user interface
3. Application interface

4. Extension language

5. Construction & layout requirements
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GENIE
GENIE Architecture

Display Engine

Core system written in C++ 2.0

X11/NeWS

Multiple windows / "graph buffers"

3-D extension will probably use PEX (PHIGS Ext. to X)
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GENIE
GENIE Architecture

Tailorable user interface
several ideas borrowed from GNU Emacs

- inousemaps
- keymaps
e.g., selection by
point-click
circling
selection-box
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GENIE
GENIE Architecture

Algorithmic layout taxonomy

1. Graph class
trees, planar, directed, etc.

2. Graphical standard
straight lines
grid embedding

3. Aesthetics
minimize area
edge crossings
# of edge bends

4. Other constraints
e.g., critical path nodes on straight line

5. Computational complexity
polynomial time
NP-hard problems

heuristics
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UNSOLVED PROBLEMS AND APPLICATIONS
IN PROXIMITY GRAPHS

Donald W. Dearholt
Department of Computer Science

Mississippi State University
MS 39762

Proximity graphs offer a delightful blend of theory and applications. I shall pro-
vide a high-level description of some of the problems in which I have been engrossed
in or tantalized by, partly in terms of the applications which would benefit by their
solutions.

The first problem concemns the most efficient utilization of proximity graphs in
the organization of data in a database intended for robotics applications. The database
described by Kurup during this workshop is an example of the application of proximity
graphs to this specialized database, but some issues remain unresolved. For example,
the conclusion of the search process may result in any degree of match, from essen-
tially exact to a clear mismatch; if the _.atch is not exact, then it would be an
improvement over our present capabilities (using the monotonic search network) if we
knew that the search process resulted in the best match available in the database.
While traversing the search path, it would also be expeditious to collect the data
needed to add the new exemplar into the database efficiently, if that is desired. It is
likely that a better understanding of proximity graphs will help in the solution of both
of thcse problems.

Information retrieval, particularly in the context of a hypertext system with a
graphical interface, is likely to benefit from the organization of data according to the
edges in some proximity graph. The work on Pathfinder in this area shows some
promise, and further refinement may be possible using a more appropriate proximity
graph. Important features of this application include (1) the clustering and support of
higher levels of abstraction provided by the Pathfinder networks, (2) multiple associa-
tive paths between highly related concepts, (3) effective search and browsing pro-
cedures, and (4) efficient ways of adding new information. The proximity graphs
which include any Pathfinder network provide support for the first two items above;
the third and fourth items on the list, however, are more difficult, particularly in the
area of information retrieval in which assumptions regarding keys or semantics are
involved. The use of proximity graphs may allow an approach which lies somewhere
between the (relatively simple) purely syntactic and the (relatively expensive) semantic
modeling approaches in both cost and performance.

The most fascinating problem, from my perspective, is the possibility of develop-
ing a unified model of some important aspects of perception and cognition. While this
may sound grandiose, the Relative Neighborhood Graph provides meaningful percep-
tual representations of objects; the Delaunay triangulation graph is, among other things,
the dual of a representation of the decision space (the Voronoi diagram) for a
minimum-distance pattern classifier (which could be based on the Selfridge model
called Pandemonium); and the Pathfinder networks are intended to model human asso-
ciative memory. Thus it now appears conceivable to consider the possibility of a
unified model for some important aspects of both cognition and perception. In this
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model, percepts would be represented by one type of proximity graph, say "P"; then
some transformations upon "P" would generate, augment, or modify a representation
for a corresponding set of concepts, represented by another reiated proximity graph,
say "C". The system of proximity graphs used in this unified model and the transfor-
mations between graphs could provide a new perspective on the transformations of
information from episodic memory to semant’c memory.

i I BN e IEE e
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SOME UNSOLVED PROBLEMS ON PROXIMITY GRAPHS'

Godfried T. Toussaint

School of Computer Science
McGill University
3480 University Street
Montreal, Quebec
CANADA H3A 2A7

ABSTRACT

Recent developments in the field of compurational morphology (spatial and
cluster analysis, computer vision, pattern recognition, computational percep-
tion, etc.) are making ever increasing use of proximity graphs. Thus it be-
comes increasingly relevant to understand the properties of such graphs as
well to design efficient algorithms for their computation. In this note we men-
tion some open problems in this area.

1. Computational Morphology
1.1  The Shape of a Set of Points
1.1.1 Introduction

One of the central problems in shape analysis is extracting the shape of a set of
points. Let S={x|, x4, ..., X, } be a finite set of points in the plane. The relative neighbor-

hood graph (RNG) [To80a] and the B-skeletons [KR85] are two structures that have been
well investigated in this coutext. The RNG is obtained by joining two points x; and X; of S

with an edge if Lune(xi, xj) does not contain any other points of S in its interior. Lune(xi, xj)

is defined as the intersection of the two discs centered at x; and X with radius equal to the

distance between x; and X;: One of the best known proximity graphs on a set of points is the

Delaunay wiangulation (DT) and it is well known that the DT is a supergraph of the RNG
[To80a]. The B-skeletons are a generalization of RNG’s and Gabriel graphs and the lune-

based neighborhoods in question are a function of a parameter 8. In [To88b] a new graph
termed the sphere-of-influence graph is proposed as a primal sketch intended to capture the
low-level perceptual structure of visual scenes consisting of dot-patterns (point-sets). The
graph suffers from none of the drawbacks of previous methods and for a dot pattern consist-
ing of n dots can be computed efficiently in O(n log n) time. For a survey of the most recent
results 1n uus area see the paper by Rudke [RaS8].

* Presented at the First Workshop on Proximity Graphs, Las Cruces, New Mexico, December 1989.
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1.1.2 The Relative Neighborhood Graph

In [JK89] it is shown that the RNG in 3-space can be computed in O(n2 log n ) time
and O(LL4(S)) space where H3(S) denotes the size of RNG(S). It is an open question

whether this upper bound can be improved. It is also not known how large H3(S) can be over
all instances of S. Denote this value by Ms(m). It is shown in [JK89] that Us(n) =

om® 2)+C) where ¢ is a positive constant and they conjecture that {L(n) = O(a).

1.1.3 [-Skeletons

In [KR85] it was shown that lune-hased 3-ckeletons with B > 1 could be computed

in O(m?) time. In [JKY89] it is shown that lune-based [-skeletons with 1 < B < 2 can be

constructed in linear time from the Delaunay triangulation in any Lp metric. The Delaunay

triangulation in any Lp metric can be computed in O(n log n) time {Le80]. It is an open
question whether for 3 > 2 these skeletons can be computed in o(n2) time. .
1.1.4: The Sphere of Influence Graph

Avis and Horton [AHS85] showed that the number of edges in the sphere-of-influence
graph is bounded above by 29n. The best upper bound to date is 17.5. T1his foilows from a
lemma of Bateman in geometrical extrema suggested by a lemma of Besicovitch (Geomerry,
May 1951, pp. 667-675) and an observation of Kachalski. Bateman’s lemma gives 18n and
Kachalski’s trick reduces it by .5. The same trick reduces Avis & Horton’s bound by .5.
David Avis conjectures that the best upper bound is 9n.

12 Polygon decomposition
1.2.1 Simple polygons

The problems of decomposing simple polygons into various types of more structured
polygons have a number of practical applications and have received considerable attention re-
cently from the theoretical perspective. See [To88a] for several papers discussing recent is-
sues. In pattern recognition it is desired to obtain decompositions into meaningful parts.
The so-callea component-directed methods decompose the polygon into well established
classes of simpler polygons such as convex or star-shaped polygons. These decompositions
are satisfactory from the morphological point of view only rarely. Another approach which
may be superior is to use procedure-directed methods based on proximity graphs. In
[To80b] it was proposed to use the relaive-neighbour decomposition (RND) of a simple

polygon P of n vertices and an O(n3) time algorithm for its computation was given. ElGindy
wud Toussamnt [ET88] reduced this complexity to O(nz). Two vertices p; and Pj of a simple
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polygon are relative neighbours if their lune contains no other vertices of P that are visible
from either p; or P} Two vertices p; and p; are said to be visible if the line segment (p; pj]

lies in P. It is an open question whether this decomposition can be computed in o(nz) time
and neither is a super-linear lower bound known for this problem.

1.2.2 Special classes of polygons

The fastest known algorithm [ET88] for computing the RND of a simple polygon is

O(n?'). On the other hand, for convex polygons the RND can be computed in O(n) time
[Sud3], and so can the Delaunay triangulation [AGSS]. However, it is shown in [ART87]
that O(n log n) is a lower bound for computing the Delaunay triangulation on the vertices of a
star-shaped or monotone polygon. It is unknown whether any other proximity graphs can be
computed in linear time for the case of convex polygons. Furthermore, for most proximity

graphs it is unknown whether they can be computed in o(n2) time for special classes of sim-
ple polygons such as star-shaped, monotone or unimodal polygons. For unimeda! polyzons
the RNG and MST can be computed in O(n) time [O189]. It is unknown whether the De-
launay triangulation on the vertices of a unimodal polygon can be computed in linear time.

2. Recognizing Proximity Graphs

One area as yet almost totally unexpiored concerns the question of the recognition of
proximity graphs. The only known result concerns Delaunay triangulatons. Given a triangu-
laton T of a set of n points, Ash & Bolker [AB&5] have shown that whether T is a Delaunav
triangulation can be determined in O(n) time.

3. Graph Theoretic Properties of Proximity Graphs

Another area which has received little attention concerns the determination of graph
theoretcal properdes of proximity grephs. The only proximity graphs which have been care-
fully examined are the Gabriel graph [MS80] and the RNG [Ur83].

4. Probabilistic Properties of Proximity Graphs

Yet another area which has received little attention concerns the determination of
probabilistic and statistical properties of proximity graphs. The only proximity graphs which
have been carefully examined are the Delaunay triangulation, the Gabriel graph, and the
RNG. Miles [Mi70] has done considerable work on the probability distribution of random
variables describing characteristics of the Delaunay triangulation. See also Getis & Boots
[GB78]. Devroye [De88] obtains a variety of results concerning the expected number of
edges in proximity graphs such as the Gabriel graph. **= RNG and several types of nearest
neighhonr grasin.  Ivo iouits ol this type are known for all the other proximity graphs dis-

cussed in this note.
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